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Abstract After the RS-stereoisomeric group D2dσ̃̂I of order 16 has been defined by
starting point group D2d of order 8, the isomorphism between D2dσ̃̂I and the point
group D4h of order 16 is thoroughly discussed. The non-redundant set of subgroups
(SSG) of D2dσ̃̂I is obtained by referring to the non-redundant set of subgroups of D4h .
The coset representation for characterizing the orbit of the four positions of an allene
skeleton is clarified to be D2dσ̃̂I (/Csσ̃̂I ), which is closely related to the D4h(/C′′′

2v).
According to the unit-subduced-cycle-index (USCI) approach (Fujita, Symmetry and
combinatorial enumeration of chemistry. Springer, Berlin 1991), the subduction of
D2dσ̃̂I (/Csσ̃̂I ) is examined so as to generate unit subduced cycle indices with chirality
fittingness (USCI-CFs). Then, the fixed-point matrix method of the USCI approach
is applied to the USCI-CFs. Thereby, the numbers of quadruplets are calculated in an
itemized fashion with respect to the subgroups of D2dσ̃̂I . After the subgroups of D2dσ̃̂I
are categorized into types I–V, type-itemized enumeration of quadruplets is conducted
to illustrate the versatility of the stereoisogram approach.

Keywords Fixed-point matrix method · Allene · Enumeration · Chirality fittingness ·
Stereoisogram · RS-stereoisomeric group

1 Introduction

1.1 Point groups in stereochemistry

In most textbooks on organic stereochemistry, point groups are introduced to char-
acterize total features of molecules. For example, the point group D2d is introduced
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to characterize allene, spiro[4,4]nonane, and so on (e.g., Fig. 3.14 of [1], Fig. 3.6.4
of [2], and Fig. 4.39 of [3]). Inner features of molecules are treated in the form of
orbitals (orbital functions) in quantum chemistry where linear (matrix) representations
are mainly used [4]. In particular, symmetry adapted linear combinations (SALCs) of
basis functions are constructed by utilizing projection operators after reducing a matrix
representation into irreducible representations [4,5]. After linear representations are
linked with coset representations, SALCs have been alternatively constructed by apply-
ing the coset representations [6], where the D2d -symmetry of allene is discussed as an
example. More detailed discussions on the relationship between linear representations
and coset representations have appeared in a recent monograph [7].

The set-of-coset-representation (SCR) notation based on coset representations has
been proposed to differentiate molecules belonging to the same point group [8]. For
example, the SCR notation D2d [/Cs(H4); /C2v(C2); /D2d(C)] is assigned to allene,
because there appear a four-membered orbit (not orbital!) governed by the coset rep-
resentation D2d(/Cs), a two-membered orbit governed by the coset representation
D2d(/C2v), and a one-membered orbit governed by the coset representation D2d (/D2d)

in an allene molecule (Table 11 of [8]). The SCI notation covers inner (local) symme-
tries (Cs , C2v , and Dd ) along with the total features (D2d ) of the allene molecule.

1.2 The USCI approach based on concepts concerning coset representations

Each orbit is characterized to be homospheric, enantiospheric, and hemispheric accord-
ing to the corresponding coset representation [9]. The terms homospheric, enan-
tiospheric, and hemispheric have attributive nature for characterizing the properties
(attributes) of an orbit. According to its sphericity, the orbit exhibits chirality fit-
tingness, which determines the packing of proligands in the orbit. In contrast, such
conventional terms as ‘equivalent’, ‘enantiotopic’, and ‘diastereotopic’ [10] have rela-
tional nature, so that the concept of chirality fittingness cannot be deduced in a rational
process.

According to its sphericity, each orbit is characterized by a sphericity index (ad , cd

or bd ). The derivation of a molecule from a given skeleton (e.g. an allene skeleton) is
described in terms of the concept of subduction of coset representations, where each
orbit contained originally in the skeleton is divided into one or more orbits. For the
purpose of discussing the behaviors of such orbits, the product of sphericity indices
is calculated to give a unit subduced cycle index with chirality fittingness (USCI-CF).
On the basis of USCI-CFs, four methods of enumeration have been developed and
they are called the unit-subduced-cycle-index (USCI) approach collectively [11].

Among the four methods of the USCI approach [11], the fixed-point matrix (FPM)
method has been applied to the enumeration of allene derivatives after the formulation
of the proligand-promolecule model [12]. Promolecules derived from an allene skele-
ton have been enumerated and listed in a tabular form (Fig. 2.5 of [11] and Fig. 5 of
[12]), where itemization to point-group symmetries has been conducted with respect
to the point group D2d . In order to enumerate nonrigid three-dimensional-structural
isomers, substituted methyl ligands have been substituted for proligands for allene
derivatives, where ligand symmetries have been taken into consideration [13].
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The partial-cycle-index (PCI) method is another versatile method of the USCI
approach, which is based on generating function [11]. Generalization of partial cycle
indices has been reported to enumerate achiral and chiral derivatives where a general
procedure is exemplified by using an allene skeleton [14]

The concept of doubly-colored graphs has been discussed as graphical models for
subductions of coset representations, double cosets, and unit subduced cycle indices,
where allene derivatives are used as representative examples [15].

1.3 The concept of Mandalas and Fujita’s proligand method

Importance of regular representations and regular bodies for characterizing orbits in
a molecule has been demonstrated by using allene derivatives as examples [16]. The
concept of mandalas as nested regular bodies has been proposed to characterize orbits
among molecule by using allene derivatives as examples [17]. The USCI approach
has been thoroughly discussed on the basis of the concept of mandalas, where orbits
in molecules are linked with orbits among molecules by using allene derivatives as
examples [18]. There has appeared a monograph concerning the concept of mandalas
[19].

The concept of sphericity indices of cycles has been formulated to develop Fujita’s
proligand method as a stereochemical extension of Pólya’s theorem, where allene
derivatives are used as representative examples [20]. Fujita’s proligand method has
been detailedly discussed in a monograph [7].

Mandalas and Fujita’s proligand method have been discussed [21]. The concept of
mandalas has been discussed by using allene derivatives as examples from a group-
theoretical point of view, so that it serves as diagrammatical expressions for charac-
terizing symmetries of stereoisomers [22].

1.4 Stereoisograms and RS-stereoisomeric groups

Allene derivatives have been enumerated under the point group D2d and compared with
an alternative enumeration under a permutation group of degree 4, which is isomorphic
to the point group D2d . The difference between the resulting isomer numbers has
been discussed in terms of isomer equivalence [23]. Stereogenicity/astereogenicity,
which is now recognized as RS-stereogenicity/RS-astereogenicity, has been formulated
from the viewpoint of global/local permutation-group symmetry. The concept of RS-
stereogenicity/RS-astereogenicity is discussed by using allene derivatives as examples
[24].

On the basis of the proligand-promolecule model [12], the concept of stereoiso-
grams has been proposed by Fujita to discuss stereogenicity and chirality compre-
hensively [25]. Thereby, it has been clarified that the conventional stereogenicity
should be replaced by a more definite term, i.e., RS-stereogenicity, for the purpose
of comparing it with chirality [26]. Each stereoisogram consists of a quadruplet of
RS-stereoisomers, i.e., a reference promolecule, an enantiomer, an RS-diastereomer,
and a holantimer. In particular, the proposal of holantimers enables us to discuss
pseudoasymmetry, RS-stereogenicity, chirality, and the Cahn–Ingold–Prelog (CIP)
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system of RS-nomenclature [27–30] as well as on prochirality [31–35] in an inte-
grated fashion.

It should be noted that anyone of the four promolecules contained in a quadruplet
can be regarded as an alternative reference promolecule, which provides an equiv-
alent stereoisogram to the original one. This means that the properties of a refer-
ence promolecule selected rather arbitrarily can be regarded as the properties of the
stereoisogram at issue.

Point Groups, RS-stereoisomeric groups, stereoisomeric groups, and isoskeletal
groups for characterizing allene derivatives have been discussed on the basis of the
stereoisogram approach [36]. The existence of five types of stereoisograms has been
proven on the basis of the existence of five types of subgroups of RS-stereoisomeric
groups, where allene derivatives are used as representative examples [37]. Chiral-
ity and RS-stereogenicity of allene derivatives have been discussed on the basis of
stereoisograms, where allene derivatives of five types are listed in tabular forms (Figs.
8–10 of [38]).

1.5 Aims of the present paper

In order to integrate the USCI approach and the stereoisogram approach, the
present paper is devoted to enumeration of allene derivatives, which are regarded
as quadruplets of promolecules contained in stereoisograms under the action of RS-
stereoisomeric groups derived from the point group D2d . Because the D4h-point group
is isomorphic to the RS-stereoisomeric group of an allene skeleton, the data of D4h

are applied to characterize the RS-stereoisomeric group derived from the point group
D2d .

2 RS-stereoisomeric groups for allene derivatives

An allene skeleton is discussed by using a top projection 1 in place of a usual projection
2, as shown in Fig. 1. The skeleton 1 (or 2) is controlled by a point group D2d (order 8),
which can be extended into the corresponding RS-stereoisomeric group D2dσ̃̂I (order
16), as listed in Table 1.

The RS-stereoisomeric group D2dσ̃̂I has a normal subgroup D2 (order 4), which is
also a normal subgroup of D2d . Hence, the D2dσ̃̂I -group is decomposed into cosets as
follows:

D2dσ̃̂I = D2 + σD2 + σ̃D2 + ̂I D2, (1)

Fig. 1 Convention for drawing
allene derivatives
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Table 1 Operations of D2dσ̃̂I and coset representation of D2dσ̃̂I (/Csσ̃̂I ) versus operations of D4h and
coset representation of D4h(/C′′′

2v)

which has been noted previously (Eq. 4 of [37]). Note that the point group D2d for the
reference allene skeleton is decomposed as follows:

D2d = D2 + σD2, (2)

where the symbol σ is a representative selected from the four (roto)reflection opera-
tions of D2d . The coset decomposition shown by Eq. 2 characterizes an enantiomeric
relationship.

In addition, there appears a subgroup of order 8 for characterizing an RS-
diastereomeric relationship:

D2σ̃ = D2 + σ̃D2, (3)

which has been noted previously (Eq. 3 of [37]). Note that the symbol σ̃ represents an
operation which has the same permutation as σ but no alternation of chirality. Another
subgroup of order 8 characterizes a holantimeric relationship:

D2̂I = D2 + ̂I D2, (4)

which has been noted previously (Eq. 2 of [37]). Note that the symbol ̂I represents an
operation which has the same permutation as I but alternation of chirality.

The operations of D2dσ̃̂I are summarized in the D2dσ̃̂I -columns of Table 1. The
upper-left part marked by the gray letter A collects the operations of the normal
subgroup D2d , the lower-left part marked by the gray letter B collects the operations
of the coset σD2 (= D2d − D2) (cf. Eq. 2), the upper-right part marked by the gray
letter C collects the operations of the coset σ̃D2 (= D2σ̃ − D2) (cf. Eq. 3), and the
lower-right part marked by the gray letter D collects the operations of the coset ̂I D2
(= D2̂I − D2) (cf. Eq. 4). Hence, Eqs. 1–4 are alternatively represented in the form
of sets of operations:
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D2dσ̃̂I = {

A, B, C, D
}

(5)

D2d = {

A, B
}

(6)

D2σ̃ = {

A, C
}

(7)

D2̂I = {

A, D
}

(8)

D2 = {

A
}

, (9)

where the cosets A, B, C, and D contain the operations listed in the D2dσ̃̂I -columns
of Table 1. It should be noted that each operation of A corresponds to an operation
of D, where the correspondence is shown by the absence or presence of a hat accent.
In a similar way, each operation of B corresponds to an operation of C, where the
correspondence is shown by the absence or presence of a tilde accent.

Each of the four cosets shown in the right-hand side of Eq. 1 corresponds to one
component of a quadruplet of RS-stereoisomers, i.e., D2 to a reference skeleton, σD2
(= D2d −D2) to its enantiomeric skeleton, σ̃D2 (= D2σ̃ −D2) to its RS-diastereomeric
skeleton, and ̂I D2 (= D2̂I −D2) to its holantimeric skeleton. Thereby, a quadruplet of
RS-stereoisomers is selected as shown in Fig. 2a, where an appropriate representative
is selected according to each coset of Eq. 1, i.e.,

1 for I (∈ D2) ∼ (1)(2)(3)(4),

1 for σd(1) (∈ σD2 = D2d − D2) ∼ (1)(2 4)(3),

3 for σ̃d(1) (∈ σ̃D2 = D2σ̃ − D2) ∼ (1)(2 4)(3), and

3 for ̂I (∈ ̂I D2 = D2̂I − D2) (1)(2)(3)(4).

The resulting diagram (Fig. 2a) is here called a reference stereoisogram. Strictly
speaking, each skeleton collected in Fig. 2a corresponds to a representative of the
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Fig. 2 Reference stereoisogram for an allene skeleton (a) and point-group symmetry of a square-planar
skeleton (b)
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corresponding coset, i.e., I (∈ D2) for 1, σd(1) (∈ σD2 = D2d − D2) for 1, σ̃d(1)

(∈ σ̃D2 = D2σ̃ − D2) for 3, ̂I (∈ ̂I D2 = D2̂I − D2) for 3. It should be noted that each
representative skeleton (1, 1, 3, or 3) is converted into its homomer under the action
of D2, where the mode of numbering is altered according to D2 so as to result in the
numbering due to the respective coset.

The operations of the D2d collected in the A- and B-part of Table 1 correspond to
respective products of cycles, which are contained in the coset representation D2d (/Cs)

[37]. The products of cycles corresponding to the operations collected in the C- and D-
parts have been originally assigned by taking account of the correspondence between
σD2 and σ̃D2 or between D2 and ̂I D2, where an overline is attached or not (e.g.,
(1)(2)(3)(4) vs. (1)(2)(3)(4) and (1)(2 4)(3) vs. (1)(2 4)(3)) to each product of cycles
and a tilde (or hat) accent is attached or not to each operation (e.g., I vs. ̂I and σd(1)

vs. σ̃d(1)). This means that the products of cycles reported originally in [37] have not
directly derived from the coset representation concerning the RS-stereoisomeric group
D2dσ̃̂I . Hence, the products of cycles should be redefined as the elements of the coset
representation D2dσ̃̂I (/Csσ̃̂I ) after the isomorphism between the point group D4h and
the RS-stereoisomeric group D2dσ̃̂I is taken into consideration.

3 Point groups isomorphic to RS-stereoisomeric groups

3.1 Symmetry elements of D2dσ̃̂I and those of D4h

According to the definition of D2dσ̃̂I , the D2d -part (A and B) of D2dσ̃̂I is isomorphic
to (the same as) the D2d -part of D4h . The remaining parts (C and D) exhibit the
correspondence shown in Table 1, so that the RS-stereoisomeric group D2dσ̃̂I is totally
isomorphic to the point group D4h . The symmetry elements of the point group D2d

along with those of the RS-stereoisomeric group D2dσ̃̂I are depicted in the left diagram
of Fig. 3 (6), where the symbols for the symmetry elements of D2dσ̃̂I (not of D2d ) are
shown in pairs of brackets.

As summarized in Table 1, the symmetry elements without a tilde or hat accent in
the left diagram of Fig. 3 (6) depict rotation or rotoreflection axes, which construct
the point group D2d (⊂ D2dσ̃̂I ). For example, the S4-axis shown as a perpendicular

Fig. 3 Symmetry elements of the point group D2d (and D2dσ̃̂I ) for characterizing an allene skeleton (6)
as well as symmetry elements of the point group D4h for characterizing a square-planar skeleton (7)
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axis in 6 is a common symmetry element to D2d , so that it generates the operations
S4, C2(3) (= S2

4 ), and S3
4 , where it implies the presence of the C2(3)-axis.

The symmetry elements with a tilde or hat accent construct the coset D2dσ̃̂I − D2d

(i.e., {C, D}). The symbol [˜S4] with a pair of brackets in 6 indicates the presence of
the˜S4-axis as a symmetry element of D2dσ̃̂I , which generates the operations ˜S4, C2(3)

(= ˜S2
4 ), and ˜S3

4 .
On the other hand, the symmetry elements of the point group D4h are depicted in

the right diagram of Fig. 3 (7), where the inversion center (i) and the horizontal mirror
plane (σh) are omitted. Because the point group D4h contains D2d as a subgroup, the
S4-axis appears as a perpendicular axis in 7, which generates the operations S4, C2(3)

(= S2
4 ), and S3

4 . In addition, the C4-axis appears as a perpendicular axis in 7, which
generates the operations C4, C2(3) (= C2

4 ), and C3
4 . The C4-axis in 7 corresponds to

the ˜S4-axis in 6.

3.2 Operations of D2dσ̃̂I and those of D4h

Similar examinations are conducted with respect to the operations of D2dσ̃̂I and those
of the point group D4h . The resulting correspondence is summarized in Table 1. The
subgroups of D2dσ̃̂I shown by Eqs. 5–9 correspond to the following subgroups of D4h :

D4h = {

A, B, C, D
}

(10)

D2d = {

A, B
}

(11)

D4 = {

A, C
}

(12)

D2h = {

A, D
}

(13)

D2 = {

A
}

. (14)

The comparison between Eqs. 5–9 and 10–14 results in the following set of isomor-
phism: D4h ∼= D2dσ̃̂I , D2d = D2d (identical), D4 ∼= D2σ̃ , and D2h ∼= D2̂I , and
D2 = D2 (identical). It follows that Eqs. 1–4 for the RS-stereoisomeric group D2dσ̃̂I
correspond respectively to the coset decompositions for the point group D4h :

D4h = D2 + σd(1)D2 + C ′
2(1)D2 + σhD2 (15)

D2d = D2 + σd(1)D2 (16)

D4 = D2 + C ′
2(1)D2 (17)

D2h = D2 + σhD2 (18)

3.3 Factor groups derived from D2dσ̃̂I and D4h

Because the subgroup D2d is a normal subgroup of D2dσ̃̂I , Eq. 1 provides a factor
group:

D2dσ̃̂I /D2 = {

D2, σD2, σ̃D2, ̂I D2
}

. (19)

As proved generally [37], a factor group generated from an RS-stereoisomeric group
is isomorphic to the point group C2v or the Klein four-group, so that it has exactly
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five subgroups, just as the point group C2v or the Klein four-group has exactly five
subgroups. The five subgroups of D2dσ̃̂I /D2 are named Type I–V as follows:

Type IV
{

D2, σD2, σ̃D2, ̂I D2
}

(20)

Type V
{

D2, σD2
}

(21)

Type II
{

D2, σ̃D2
}

(22)

Type I
{

D2, ̂I D2
}

(23)

Type III
{

D2
}

(24)

These five types create stereoisograms of five types [37]. They are related to the coset
decompositions represented by Eqs. 1–4 or by Eqs. 5–8 (along with Eq. 9).

In a parallel way, Eq. 15 provides another factor group:

D4h/D2 = {

D2, σd(1)D2, C ′
2(6)D2, σhD2

}

(25)

which is isomorphic to the point group C2v or the Klein four-group. The factor group
D4h/D2 has exactly five subgroups. They are related to the coset decompositions
represented by Eqs. 15–18 or by Eqs. 10–13 (along with Eq. 14).

3.4 Subgroups of D2dσ̃̂I and those of D4h

The point group D4h has 27 subgroups up to conjugacy, which have been discussed
in detail in terms of a non-redundant set of subgroups (SSG) [39]:

SSGD4h =
{

1
C1,

2
C2,

3
C′

2,
4

C′′
2,

5
Cs,

6
C′

s,
7

C′′
s ,

8
Ci ,

9
C4,

10
S4,

11
C2v,

12
C′

2v,
13

C′′
2v,

14
C′′′

2v,

15
C2h,

16
C′

2h,
17

C′′
2h,

18
D2,

19
D′

2,
20

C4v,
21

C4h,
22

D2d ,
23

D′
2d ,

24
D2h,

25
D′

2h,
26
D4,

27
D4h

}

(26)

where the subgroups are aligned in the ascending order of their orders. For the con-
venience of cross reference, sequential numbers from 1 to 27 are attached to the
respective subgroups. In accord with Eqs. 15–18 (and the trivial case of D2), the
subgroups collected in Eq. 26 are categorized to give five categories, as shown in
Fig. 4:

1. four subgroups of D2,
2. four subgroups of D2d except those of D2,
3. four subgroups of D4 except those of D2,
4. eight subgroups of D2h except those of D2, and
5. seven subgroups of D4h except those of D2, D2d , D4, and D4h .

Because the RS-stereoisomeric group D2dσ̃̂I is isomorphic to the point group D4h ,
there appear 27 subgroups of D2dσ̃̂I , which are respectively isomorphic to those of D4h ,

123



1726 J Math Chem (2014) 52:1717–1750

Fig. 4 Subgroups of the point group D4h and the corresponding isomorphic subgroups of the RS-
stereoisomeric group D2dσ̃̂I . For the convenience of cross reference to Eqs. 26 and 54, sequential numbers
from 1 to 27 are attached to the respective subgroups. The symbols for the subgroups of D2d are essentially
common in both of the two isomorphic series (types III and V). The symbol for each subgroup of D2σ̃ (II)
contains a tilde accent. The symbol for each subgroup of D2̂I (I) contains a hat accent. The symbol for each
subgroup of D2dσ̃̂I (IV) contains both a tilde and a hat accent

as summarized in Fig. 4. By referring to the correspondence between the operations
of Ddσ̃̂I and those of D4h (Table 1), the respective subgroups of D2dσ̃̂I are constructed
as follows:

1. The four subgroups of the point group D2 are also the subgroups of the RS-
stereoisomeric group D2dσ̃̂I .

C1
1= {

I
}

(27)

C2
2= {

I, C2(3)

}

(28)

C′
2

3= {

I, C2(1)

}

(29)

D2
18= {

I, C2(3), C2(1), C2(2)

}

(30)

The symbols of the point groups are also used to designate the subgroups of the RS-
stereoisomeric group. See Fig. 4. These RS-stereoisomeric groups are categorized
to type III.

2. The four subgroups of D2d (except those of D2) are, at the same time, recognized
as the subgroups of the RS-stereoisomeric group D2dσ̃̂I :

Cs
6= {

I, σd(1)

}

(31)

S4
10= {

I, S4, C2(3), S3
4

}

(32)
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C2v
12= {

I, C2(3), σd(1), σd(2)

}

(33)

D2d
22= {

I, C2(3), C2(1), C2(2), σd(1), σd(2), S4, S3
4

}

(34)

The symbols of the point groups are also used to designate the subgroups of the RS-
stereoisomeric group. The prime of the symbol C′

s or C′
2v (⊂ D4h) is deleted to give

Cs or C2v in D2dσ̃̂I because of no confusion. See Fig. 4. These RS-stereoisomeric
groups are categorized to type V.

3. The four subgroups of D4 (except those of D2) correspond to the following sub-
groups of D2σ̃ (−D2).

Cσ̃
4= {

I, σ̃d(1)

}

(⊃ C1) (35)

S̃4
9= {

I,˜S4(3), C2(3),˜S
3
4(3)

}

(⊃ C2) (36)

C2σ̃
19= {

I, C2(3), σ̃d(1), σ̃d(2)

}

(⊃ C2) (37)

D2σ̃
26= {

I, C2(1), C2(2), C2(3), σ̃d(1), σ̃d(2),˜S4(3),˜S
3
4(3)

}

(⊃ D2) (38)

The symbols of the subgroups are selected by designating a common subgroup
to D2d (denoted in a pair of parentheses) which is attached by a suffix to refer
to an uncommon operation. Each of the symbols contains a tilde accent in its
suffix. For example, the symbol C2σ̃ stems from the largest subgroup C2 (as a
common subgroup to D2d ) and from an uncommon operation σ̃d(1). The symbol
S̃4 is adopted for the purpose of avoiding the confusion with C2σ̃ . These RS-
stereoisomeric groups are categorized to type II.

4. The eight subgroups of D2h (except those of D2) correspond to the following
subgroups of D2̂I (−D2).

Cσ̂
5= {

I, ̂C2(1)

}

(⊃ C1) (39)

C
̂I

7= {

I, ̂I
}

(⊃ C1) (40)

C′̂
σ

8= {

I, ̂C2(3)

}

(⊃ C1) (41)

C2σ̂
11= {

I, C2(3), ̂C2(1), ̂C2(2)

}

(⊃ C2) (42)

C2̂I
13= {

I, C2(1), ̂C2(1), ̂I
}

(⊃ C2) (43)

C′
2̂I

15= {

I, C2(3), ̂C2(3), ̂I
}

(⊃ C2) (44)

C′
2σ̂

16= {

I, C2(1), ̂C2(3), ̂C2(2)

}

(⊃ C2) (45)

D2̂I
24= {

I, C2(1), C2(2), C2(3), ̂I , ̂C2(1), ̂C2(2), ̂C2(3)

}

(⊃ D2) (46)

The suffix σ̂ is used to refer to ̂C2(1) and so on for the sake of simplicity in notations.
The names of the subgroups are characterized by the symbols with a hat accent.
These RS-stereoisomeric groups are categorized to type I.
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5. The seven subgroups of D4h (except those of D2, D2d , D4, and D2h) correspond
to the following subgroups of D2dσ̃̂I .

Csσ̃̂I
14= {

I, σ̃d(1), ̂I , σd(1)

}

(⊃ Cs) (47)

Csσ̃ σ̂
17= {

I, σ̃d(1), ̂C2(3), σd(2)

}

(⊃ Cs) (48)

S̃4σ̂

20= {

I,˜S4(3), C2(3),˜S
3
4(3),

̂C2(1), ̂C2(2), σd(1), σd(2)

}

(⊃ S̃4, C2v) (49)

S̃4̂I
21= {

I,˜S4(3), C2(3),˜S
3
4(3),

̂I , ̂C2(3), S4(3), S3
4(3)

}

(⊃ S̃4, S4) (50)

S4σ̃ σ̂
23= {

I, C2(3), σ̃d(1), σ̃d(2), ̂C2(1), ̂C2(2), S4(3), S3
4(3)

}

(⊃ S4) (51)

C2vσ̃̂I
25= {

I, C2(3), σ̃d(1), σ̃d(2), ̂I , ̂C2(3), σd(1), σd(2)

}

(⊃ C2v) (52)

D2dσ̃̂I
27= {

I, C2(1), C2(2), C2(3), σ̃d(1), σ̃d(2),˜S4(3),˜S
3
4(3),

̂I , ̂C2(1), ̂C2(2), ̂C2(3), σd(1), σd(6), S4(3), S3
4(3)

}

(⊃ D2d) (53)

The suffix σ̂ is used to refer to ̂C2(1) and so on for the sake of simplicity in
notations. The symbol S̃4σ̂ is based on the subgroup S̃4 in place of C2v . The symbol
S̃4̂I is based on the subgroup S̃4 in place of S4. The names of the subgroups are
characterized by the symbols with both a hat accent and a tilde accent. These
RS-stereoisomeric groups are categorized to type IV.

According to the data of Fig. 4, Eq. 26 for the point group D4h is converted into a
non-redundant set of subgroups (SSG) for D2dσ̃̂I :

SSGD2dσ̃̂I
=

{

1
C1,

2
C2,

3
C′

2,
4

Cσ̃ ,
5

Cσ̂ ,
6

Cs,
7

C
̂I ,

8
C′̂

σ ,
9

S̃4,
10
S4,

11
C2σ̂ ,

12
C2v,

13
C2̂I ,

14
Csσ̃̂I ,

15
C′

2̂I
,

16
C′

2σ̂ ,
17

Csσ̃ σ̂ ,
18
D2,

19
C2σ̃ ,

20
S̃4σ̂ ,

21
S̃4̂I ,

22
D2d ,

23
S4σ̃ σ̂ ,

24
D2̂I ,

25
C2vσ̃̂I ,

26
D2σ̃ ,

27
D2dσ̃̂I

}

,

(54)

where the subgroups are aligned in the ascending order of their orders. For the conve-
nience of cross reference, sequential numbers from 1 to 27 are attached to the respective
subgroups.

4 Subduction of coset representations

4.1 Coset representations

The allene skeleton 6 belongs to D2d , while the square-planar skeleton 7 belongs to
D4h from the viewpoint of the point-group theory, as shown in Fig. 3. To demonstrate
the correspondence between D2d and D4h , we focus our attention on its four midpoints
(or the four edges) of 7, which are related to the four vertices of 6.
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According to the USCI approach [11], the four midpoints (or the four edges) of 7
construct an orbit governed by the coset representation D4h(/C′′′

2v) of degree 4, where
the local symmetry C′′′

2v is represented as follows:

C′′′
2v

14= {

I, C ′
2(1), σh, σd(1)

}

(55)

= {

(1)(2)(3)(4), (1)(2 4)(3), (1)(2)(3)(4), (1)(2 4)(3)
}

, (56)

where a one-cycle, i.e., (1) or (1), appears in each product of cycles. Hence, the
midpoint 1 is fixed under the point group C′′′

2v , so that the local symmetry of the
midpoint 1 is determined to be C′′′

2v . For the coset representations of the point group
D4h , see [39].

On the other hand, the four vertices of the allene skeleton 6 (Fig. 3) construct an orbit,
which is governed by the coset representation D2dσ̃̂I (/Csσ̃̂I ) of degree |D2dσ̃̂I |/|Csσ̃̂I |
(= 16/4 = 4). The coset representation D2dσ̃̂I (/Csσ̃̂I ) consists of the same set of
products of cycles as D4h(/C′′′

2v) (Table 1). The local symmetry Csσ̃̂I (Eq. 47) is
isomorphic to C′′′

2v (Eq. 56):

Csσ̃̂I
14= {

I, σ̃d(1), ̂I , σd(1)

}

= {

(1)(2)(3)(4), (1)(2 4)(3), (1)(2)(3)(4), (1)(2 4)(3)
}

, (57)

which contains the same set of products of cycles as contained in Eq. 56. Because a
one-cycle, i.e., (1) or (1), appears in each product of cycles, the vertex 1 is fixed under
the point group Csσ̃̂I , so that the local symmetry of the vertex 1 is determined to be
Csσ̃̂I .

4.2 Subduction of coset representations and USCI-CFs for point groups

The subduction of the coset representation D4h(/C′′′
2v) is conducted according to the

USCI approach [11]. For example, the D4h(/C′′′
2v)-orbit is restricted to D2d in accord

with the subduction of the coset representation:

D4h
(

/C′′′
2v

) ↓ D2d = D2d (/Cs) , (58)

which is listed in the 22nd row of Table 2. Note that the degree of D2d (/Cs) is calculated
to be |D2d |/|Cs | = 8/2 = 4. Hence, the D4h(/C′′′

2v)-orbit of the four midpoints of 7
is not separated under this subduction so as to retain one orbit governed by the coset
representation D2d(/Cs).

The procedure for subduction is repeated to cover all of the SSG (Eq. 26) to give
the data summarized in the subduction column of Table 2. For a related subduction of
another coset representation D4h(/C′′′

2v), see [39].
Each coset representation generated by the subduction is characterized by a spheric-

ity index (SI), i.e., ad for a homospheric coset representation of degree d, cd for a
enantiospheric coset representation of degree d, and bd for a hemispheric coset rep-
resentation of degree d. Because the whole result of the subduction is characterized
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Table 2 Subduction of D4h(/C′′′
2v)

Subgroup
(↓ G j )

Subduction
(D4h(/C′′′

2v) ↓
G j )

USCI-CF USCI GEM

Total
(̂N j )

Chiral
(̂N (e)

j )
Achiral
(̂N (a)

j )

1 C1 4C1(/C1) b4
1 s4

1 1/16 1/16 0

2 C2 2C2(/C1) b2
2 s2

2 1/16 1/16 0

3 C′
2 2C′

2(/C1) b2
2 s2

2 1/8 1/8 0

4 C′′
2 C′′

2(/C1) + 2C′′
2(/C2) b2

1b2 s2
1 s2 1/8 1/8 0

5 Cs 2Cs (/C1) c2
2 s2

2 1/8 −1/8 1/4

6 C′
s C′

s (/C1) + 2C′
s (/Cs ) a2

1c2 s2
1 s2 1/8 −1/8 1/4

7 C′′
s 4C′′

s (/Cs ) a4
1 a4

1 1/16 −1/16 1/8

8 Ci 2Ci (/C1) c2
2 s2

2 1/16 −1/16 1/8

9 C4 C4(/C1) b4 s4 1/8 1/8 0

10 S4 S4(/C1) c4 s4 1/8 −1/8 1/4

11 C2v C2v(/C1) c4 s4 0 0 0

12 C′
2v C′

2v(/Cs ) + C′
2v(/C′

s ) a2
2 s2

2 0 0 0

13 C′′
2v 2C′′

2v(/C′
s ) a2

2 s2
2 0 0 0

14 C′′′
2v C′′′

2v(/C′
s ) + 2C′′′

2v(/C2v) a2
1a2 s2

1 s2 0 0 0

15 C2h 2C2h(/Cs ) a2
2 s2

2 0 0 0

16 C′
2h C′

2h(/C1) c4 s4 0 0 0

17 C′′
2h C′′

2h(/C2) + C′′
2h(/Cs ) a2c2 s2

2 0 0 0

18 D2 D2(/C1) b4 s4 0 0 0

19 D′
2 D′

2(/C′
2) + D′

2(/C′′
2) b2

2 s2
2 0 0 0

20 C4v C4v(/C′
s ) a4 s4 0 0 0

21 C4h C4h(/Cs ) a4 s4 0 0 0

22 D2d D2d (/Cs ) a4 s4 0 0 0

23 D′
2d D′

2d (/C′
2) c4 s4 0 0 0

24 D2h D2h(/C′′
s ) a4 s4 0 0 0

25 D′
2h D′

2h(/C′
2h) + D′

2h(/C′′
2h) a2

2 s2
2 0 0 0

26 D4 D4(/C′′
2) b4 s4 0 0 0

27 D4h D4h(/C′′′
2v) a4 s4 0 0 0

by a product of SIs, the product of SIs is called a unit subduced cycle index with
chirality fittingness (USCI-CF) according to Def. 9.3 of [11]. For example, the sub-
duction D4h(/C′′′

2v) ↓ D2d (Eq. 58) is characterized by a USCI-CF a4. Similarly, the
data collected in the subduction column of Table 2 provide USCI-CFs collected in the
USCI-CF column of the same table. When sphericities are not taken into considera-
tion, USCIs (without chirality fittingness) are obtained by putting sd = ad = bd = cd

according to Def. 9.2 of [11], as collected in the USCI column of Table 2. By obey-
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ing the procedure exemplified by Table 2, we are able to obtain the full list of the
USCI-CFs of D4h .

4.3 Subduction of coset representations and USCI-CFs for RS-stereoisomeric groups

4.3.1 Subduction to point subgroups

Because the RS-Stereoisomeric group D2dσ̃̂I contains the point group D2d as a sub-
group, the subduction of D2dσ̃̂I (/Csσ̃̂I ) to the point group D2d or its subgroup can
be treated in a similar way to the coset representation D4h(/C′′′

2v). For example, the
D2dσ̃̂I (/Csσ̃̂I )-orbit is restricted to D2d in accord with the subduction of the coset
representation:

D2dσ̃̂I

(

/Csσ̃̂I

) ↓ D2d = D2d (/Cs) , (59)

which is shown in the 22nd row of Table 3. Note that the degree of D2d(/Cs)

(homospheric) is calculated to be |D2d |/|Cs | = 8/2 = 4. This means that the
D2dσ̃̂I (/Csσ̃̂I )-orbit of the four vertices of 6 is not separated under this subduction
so as to retain one orbit governed by the coset representation D2d(/Cs). Because
the right-hand side of Eq. 59 is concerned with the point group D2d , the subduction
Ddσ̃̂I (/Csσ̃̂I ) ↓ D2d is characterized by a USCI-CF, a4.

Because the subgroup C′
s of D4h is identical with the subgroup Cs of D2dσ̃̂I , the

subduction to Cs is shown as follows:

Ddσ̃̂I

(

/Csσ̃̂I

) ↓ Cs = Cs (/C1) + 2Cs (/Cs) (60)

which appears in the 6-th row of Table 3. The degree of Cs(/C1) (enantiospheric) is
equal to |Cs |/|C1| = 2/1 = 2, while the degree of Cs(/Cs) (homospheric) is equal
to |Cs |/|Cs | = 2/2 = 1. Hence, the subduction D2dσ̃̂I (/Csσ̃̂I ) ↓ Cs is characterized
by a USCI-CF, a2

1c2.
The subductions to the subgroups collected in the D2d (V)-row of Fig. 4 (i.e., Cs ,

S4, C2v , and D2d ) and those collected in the D2(III)-row (i.e., C1, C2, C′
2, and D2)

can be discussed in a parallel way, so that the corresponding subduction results and
USCI-CFs collected in Table 3 are equivalent to the counterparts collected in Table 2.

4.3.2 Subduction to RS-stereoisomeric subgroups

In order to extend the concept of sphericities under point groups [11] to the concept
of sphericities under RS-stereoisomeric groups, an RS-stereoisomeric group and its
subgroups (also RS-stereoisomeric groups) are categorized by means of extended
chirality/achirality:

1. If an RS-stereoisomeric group contains a (roto)reflection operation and/or a ligand
reflection operation (with a hat accent in the present notation), it is defined to be
ex-achiral.

2. If an RS-stereoisomeric group contains no (roto)reflection operations nor ligand
reflection operations, it is defined to be ex-chiral.
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Table 3 Subduction of D2dσ̃̂I (/Csσ̃̂I )

Subgroup
(↓ Ǵ j type)

Subduction
(D2dσ̃̂I
(/Csσ̃̂I ) ↓ Ǵ j )

USCI-
CF

USCI TEM

̂N j ̂N (I )
j

̂N (I I )
j

̂N (I I I )
j

̂N (I V )
j

̂N (V )
j

1 C1 III 4C1(/C1) b4
1 s4

1 1/16 0 0 1/16 0 0

2 C2 III 2C2(/C1) b2
2 s2

2 1/16 0 0 1/16 0 0

3 C′
2 III 2C′

2(/C1) b2
2 s2

2 1/8 0 0 1/8 0 0

4 Cσ̃ II Cσ̃ (/C1) +
2Cσ̃ (/Cσ̃ )

b2
1b2 s2

1 s2 1/8 0 1/4 −1/8 0 0

5 Cσ̂ I 2Cσ̂ (/C1) c2
2 s2

2 1/8 1/4 0 −1/8 0 0

6 Cs V Cs (/C1) +
2Cs (/Cs )

a2
1c2 s2

1 s2 1/8 0 0 −1/8 0 1/4

7 C
̂I I 4C

̂I (/C
̂I ) a4

1 a4
1 1/16 1/8 0 −1/16 0 0

8 C′̂
σ I 2C′̂

σ (/C1) c2
2 s2

2 1/16 1/8 0 −1/16 0 0

9 S̃4 II S̃4(/C1) b4 s4 1/8 0 1/4 −1/8 0 0

10 S4 V S4(/C1) c4 s4 1/8 0 0 −1/8 0 1/4

11 C2σ̂ I C2σ̂ (/C1) c4 s4 0 0 0 0 0 0

12 C2v V C2v(/Cs ) +
C2v(/C′

s )

a2
2 s2

2 0 0 0 0 0 0

13 C2̂I I 2C2̂I (/C
̂I ) a2

2 s2
2 0 0 0 0 0 0

14 Csσ̃̂I IV Csσ̃̂I (/C
̂I )+ 2Csσ̃̂I (/Csσ̃̂I )

a2
1a2 s2

1 s2 0 −1/4 −1/4 1/4 1/2 −1/4

15 C′
2̂I

I 2C′
2̂I

(/C
̂I ) a2

2 s2
2 0 0 0 0 0 0

16 C′
2σ̂ I C′

2σ̂ (/C1) c4 s4 0 0 0 0 0 0

17 Csσ̃ σ̂ IV Csσ̃ σ̂ (/Cσ̃ )

+ Csσ̃ σ̂ (/Cs )

a2c2 s2
2 0 −1/4 −1/4 1/4 1/2 −1/4

18 D2 III D2(/C1) b4 s4 0 0 0 0 0 0

19 C2σ̃ II C2σ̃ (/Cσ̃ ) +
C2σ̃ (/C′̃

σ )

b2
2 s2

2 0 0 0 0 0 0

20 S̃4σ̂ IV S̃4σ̂ (/Cs ) a4 s4 0 −1/4 −1/4 1/4 1/2 −1/4

21 S̃4̂I IV S̃4̂I (/C
̂I ) a4 s4 0 −1/4 −1/4 1/4 1/2 −1/4

22 D2d V D2d (/Cs ) a4 s4 0 0 0 0 0 0

23 S4σ̃ σ̂ IV S4σ̃ σ̂ (/Cσ̃ ) c4 s4 0 −1/4 −1/4 1/4 1/2 −1/4

24 D2̂I I D2̂I (/C
̂I ) a4 s4 0 0 0 0 0 0

25 C2vσ̃̂I IV C2vσ̃̂I (/Csσ̃̂I )

+ C2vσ̃̂I (/C′
sσ̃̂I

)

a2
2 s2

2 0 1/4 1/4 −1/4 −1/2 1/4

26 D2σ̃ II D2σ̃ (/Cσ̃ ) b4 s4 0 0 0 0 0 0

27 D2dσ̃̂I IV D2dσ̃̂I (/Csσ̃̂I ) a4 s4 0 1/2 1/2 −1/2 −1 1/2

Note that the prefix ‘ex’ is an abbreviated form of ‘extended’.
Among the 27 subgroups of the RS-stereoisomeric group D2dσ̃̂I listed in Eq. 54,

those listed as type II and type III in Fig. 4 are ex-chiral according to the definition
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described in the preceding paragraph. On the other hand, those listed as type I, type
IV, and type V are determined to be ex-achiral.

It should be noted that type-I subgroups of the RS-stereoisomeric group D2dσ̃̂I (cf.
D2̂I (I)-row of Table 4) are ex-achiral, while the corresponding subgroups of the point
group D2d are (ex-)chiral. Thus, the correspondence between the (ex-)chiral subgroups
of D2d and the ex-achiral type-I subgroups of D2dσ̃̂I is as follows: C1 vs. Cσ̂ ; C1 vs.
C

̂I ; C1 vs. Cσ̂ ′ ; C2 vs. C2σ̂ ; C2 vs. C2̂I ; C2 vs. C′
2̂I

; C′
2 vs. C′

2σ̂ ; and D2 vs. D2̂I . This
correspondence reflects self-holantimeric relationships (due to asclerality), which are
inherent in type-I stereoisograms. Discussions based on the point group D2d would
overlook this type of hidden properties.

A coset representation Ǵ(/Ǵi ) based on an RS-stereoisomeric group Ǵ is catego-
rized as follows:

1. If both the RS-stereoisomeric groups, Ǵ (global symmetry) and Ǵi (local sym-
metry), are ex-achiral, the coset representation Ǵ(/Ǵi ) is defined as being
homospheric and characterized by a sphericity index ad where d = |Ǵ|/|Ǵi |.

2. If the global RS-stereoisomeric group Ǵ is ex-achiral and the local RS-
stereoisomeric group Ǵi ) is ex-chiral, the coset representation Ǵ(/Ǵi ) is defined
as being enantiospheric and characterized by a sphericity index cd where d =
|Ǵ|/|Ǵi |.

3. If both the RS-stereoisomeric groups, Ǵ (global symmetry) and Ǵi ) (local symme-
try), are ex-chiral, the coset representation Ǵ(/Ǵi ) is defined as being hemispheric
and characterized by a sphericity index bd where d = |Ǵ|/|Ǵi |.

A coset representation Ǵ(/Ǵi ) is subduced into a subgroup Ǵ j . The subduction
Ǵ(/Ǵi ) ↓ Ǵ j is represented by a sum of coset representations based on the subgroup
Ǵ j . The sum of coset representations is characterized by a product of sphericity indices,
which is also called a unit subduced cycle index with chirality fittingness (USCI-CF).

The subductions of D2dσ̃̂I (/Csσ̃̂I ) to respective subgroups shown in Eq. 54 are listed
in the subduction column of Table 3. The corresponding USCI-CFs are collected in
the USCI-CF column of Table 3.

For example, the subduction of D2dσ̃̂I (/Csσ̃̂I ) to Cσ̂ is represented as follows:

D2dσ̃̂I (/Csσ̃̂I ) ↓ Cσ̂ = 2Cσ̂ (/C1), (61)

where the degree of the coset representation Cσ̂ (/C1) is calculated to be |Cσ̂ |/|C1| =
2/1 = 2. Because the subgroup Cσ̂ is presumed to be ex-achiral and C1 is ex-chiral,
the the coset representation Cσ̂ (/C1) is concluded to be enantiospheric. Hence, this
subduction gives the USCI-CF c2

2 by considering the sphericities of the respective
coset representations, as listed in the 5th row of Table 3. This behavior corresponds
to the subduction D4h(/C′′′

2v) ↓ Cs shown in the 5th row of Table 2.
Another example is the subduction of D2dσ̃̂I (/Csσ̃̂I ) to Csσ̃ σ̂ as follows:

D2dσ̃̂I (/Csσ̃̂I ) ↓ Csσ̃ σ̂ = Csσ̃ σ̂ (/Cσ̃ ) + Csσ̃ σ̂ (/Cs), (62)
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which is shown at the 17th row of Table 3. This subduction gives the USCI-CF a2c2
by considering the sphericities of the respective coset representations. This behavior
corresponds to the subduction D4h(/C′′′

2v) ↓ C′′
2h shown in the 17th row of Table 2.

5 Symmetry-itemized enumeration

5.1 Fixed-point vectors for symmetry-itemized enumeration

A subduced cycle index with chirality fittingness (SCI-CF) defined as a product of
USCI-CFs (Def. 19.3 of [11]) is capable of evaluating the number of fixed promole-
cules as RS-stereoisomers. Such an SCI-CF is identical with the corresponding USCI-
CF (the USCI-CF-column of Table 3) in the present enumeration of quadruplets of
RS-stereoisomers, because there exists a single orbit.

Suppose that substituents for the four positions of 1 (Fig. 1) are selected from an
inventory of proligands:

X = {

A, B, X, Y; p, q, r, s; p, q, r, s
}

, (63)

where the letters A, B, X, and Y represent achiral proligands and the pairs of p/p, q/q,
r/r, and s/s represent pairs of enantiomeric proligands in isolation (when detached).
According to Lemma 19.2 of [11], we use the following ligand-inventory functions:

ad = Ad + Bd + Xd + Yd (64)

cd = Ad + Bd + Xd + Yd + 2pd/2pd/2 + 2qd/2qd/2 + 2rd/2rd/2 + 2sd/2sd/2 (65)

bd = Ad + Bd + Xd + Yd + pd + qd + rd + sd + pd + qd + rd + sd . (66)

It should be noted that the power d/2 appearing in Eq. 65 is an integer because the
subscript d of cd is always even in the light of the enantiosphericity of the correspond-
ing orbit. These ligand-inventory functions are introduced into an SCI-CF to give a
generating function, in which the coefficient of the term AaBbXx Yyppppqqqq rr qr ssqs

indicates the number of fixed promolecules to be counted. Because A, B, etc. appear
symmetrically, the term can be represented by the following partition:

[θ ] = [a, b, x, y; p, p, q, q, r, r , s, s] , (67)

where we put a ≥ b ≥ x ≥ y, p ≥ p, q ≥ q , r ≥ r , s ≥ s, and p ≥ q ≥ r ≥ s
without losing generality. For the purpose of systematic enumeration of allenes, the
following partitions are taken into consideration, where partitions with achiral and
chiral proligands are listed:

[θ ]1 = [4, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] (

for A4etc.
)

(68)

[θ ]2 = [3, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] (

for A3B etc.
)

(69)

[θ ]3 = [3, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] (

for A3p etc.
)

(70)

[θ ]4 = [2, 2, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] (

for A2 B2etc.
)

(71)
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[θ ]5 = [2, 0, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] (

for A2 p2etc.
)

(72)

[θ ]6 = [2, 1, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0] (

for A2BX etc.
)

(73)

[θ ]7 = [2, 1, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] (

for A2Bp etc.
)

(74)

[θ ]8 = [2, 0, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] (

for A2ppetc.
)

(75)

[θ ]9 = [2, 0, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] (

for A2pq etc.
)

(76)

[θ ]10 = [1, 1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0] (

for ABXY
)

(77)

[θ ]11 = [1, 1, 1, 0; 1, 0, 0, 0, 0, 0, 0, 0] (

for ABXp etc.
)

(78)

[θ ]12 = [1, 1, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] (

for ABp2etc.
)

(79)

[θ ]13 = [1, 1, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] (

for ABppetc.
)

(80)

[θ ]14 = [1, 1, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] (

for ABpq etc.
)

(81)

[θ ]15 = [1, 0, 0, 0; 3, 0, 0, 0, 0, 0, 0, 0] (

for Ap3etc.
)

(82)

[θ ]16 = [1, 0, 0, 0; 2, 1, 0, 0, 0, 0, 0, 0] (

for Ap2petc.
)

(83)

[θ ]17 = [1, 0, 0, 0; 2, 0, 1, 0, 0, 0, 0, 0] (

for Ap2q etc.
)

(84)

[θ ]18 = [1, 0, 0, 0; 1, 1, 1, 0, 0, 0, 0, 0] (

for Appq etc.
)

(85)

[θ ]19 = [1, 0, 0, 0; 1, 0, 1, 0, 1, 0, 0, 0] (

for Apqr etc.
)

(86)

In addition, partitions with no achiral proligands are listed as follows:

[θ ]20 = [0, 0, 0, 0; 4, 0, 0, 0, 0, 0, 0, 0] (

for p4etc.
)

(87)

[θ ]21 = [0, 0, 0, 0; 3, 1, 0, 0, 0, 0, 0, 0] (

for p3petc.
)

(88)

[θ ]22 = [0, 0, 0, 0; 3, 0, 1, 0, 0, 0, 0, 0] (

for p3q etc.
)

(89)

[θ ]23 = [0, 0, 0, 0; 2, 2, 0, 0, 0, 0, 0, 0] (

for p2p2etc.
)

(90)

[θ ]24 = [0, 0, 0, 0; 2, 1, 1, 0, 0, 0, 0, 0] (

for p2p q etc.
)

(91)

[θ ]25 = [0, 0, 0, 0; 2, 0, 2, 0, 0, 0, 0, 0] (

for p2q2etc.
)

(92)

[θ ]26 = [0, 0, 0, 0; 2, 0, 1, 1, 0, 0, 0, 0] (

for p2qqetc.
)

(93)

[θ ]27 = [0, 0, 0, 0; 2, 0, 1, 0, 1, 0, 0, 0] (

for p2qr etc.
)

(94)

[θ ]28 = [0, 0, 0, 0; 1, 1, 1, 1, 0, 0, 0, 0] (

for p pqqetc.
)

(95)

[θ ]29 = [0, 0, 0, 0; 1, 1, 1, 0, 1, 0, 0, 0] (

for ppqr etc.
)

(96)

[θ ]30 = [0, 0, 0, 0; 1, 0, 1, 0, 1, 0, 1, 0] (

for pqrs etc.
)

(97)

For example, let us examine the SCI-CF (USCI-CF) for D2dσ̃̂I (/Csσ̃̂I ) ↓ Cs , i.e.,
a2

1c2 (cf. the 6th row of Table 3), into which the ligand-inventory functions (Eqs.
64–66) are introduced. The resulting equation is expanded to give the following
generating function:
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gCs = (

A + B + X + Y
)2(A2 + B2 + X2 + Y2 + 2pp + 2qq + 2rr + 2ss

)

= {

A4 + B4 + X4 + Y4} + {

2A3B + 2A3X + 2A3Y + · · · } +
{

2A2B2 + 2A2X2 + · · · } + {

2A2BX + 2A2BY + · · · } +
{

2A2pp + 2A2qq + · · · } + {

4ABpp + 4ABqq + · · · }, (98)

where the terms of each pair of braces in the last side are represented collectively by
a partition selected form [θ ]i (i = 1–30). Let the symbol ρ[θ]i Ǵ j

be the coefficient of

the term corresponding to [θ ]i (i = 1–30) and Ǵ j (⊂ D2dσ̃̂I ). The data calculated by
Eq. 98 are represented as follows:

ρ[θ]1Cs = 1 (99)

ρ[θ]2Cs = 2 (100)

ρ[θ]4Cs = 2 (101)

ρ[θ]6Cs = 2 (102)

ρ[θ]8Cs = 2 (103)

ρ[θ]13Cs = 4 (104)

This procedure is repeated to cover all the subgroups contained in SSGD2dσ̃̂I
(Eq.

54) by using the data of Table 3. Thereby, we obtain ρ[θ]i Ǵ j
for Ǵ j (∈ SSGD2dσ̃̂I

),
which are collected so as to give an FPV for symmetry-itemized enumeration for a
respective partition [θ ]i (i = 1–30):

FPV[θ]1

= (

ρ[θ]1C1 , . . . , ρ[θ]1Cs , . . . , ρ[θ]1Ǵ j
, . . . , ρ[θ]1D2dσ̃̂I

)

= (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

(105)

FPV[θ]2

= (

ρ[θ]2C1 , . . . , ρ[θ]2Cs , . . . , ρ[θ]2Ǵ j
, . . . , ρ[θ]2D2dσ̃̂I

)

= (4, 0, 0, 2, 0, 2, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(106)

(omitted)

Note that the values ρ[θ]1Cs (Eq. 99) and ρ[θ]2Cs (Eq. 100) appear at the 6th positions
of the respective FPVs (Eqs. 105 and 106).

According to Theorem 19.4 (coupled with Theorem 15.4) in [11], the FPVs are
multiplied by the inverse M−1

D2dσ̃̂I
(Eq. 109) to give the following isomer-counting

vectors (ICVs):
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ICV[θ]1 = FPV[θ]1 × M−1
D2dσ̃̂I

= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1),

(107)

ICV[θ]2 = FPV[θ]2 × M−1
D2dσ̃̂I

= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(108)

(omitted)

The inverse mark table M−1
D2dσ̃̂I

is calculated by starting from the mark table MD2dσ̃̂I
,

which is identical with the mark table MD4h reported previously in [39]. Thus, we
obtain:

M−1
D2dσ̃̂I

= M−1
D4h

= (

m ji
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜
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1/16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1/16 1/8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1/8 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1/8 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1/8 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1/8 0 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1/16 0 0 0 0 0 1/8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1/16 0 0 0 0 0 0 1/8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1/8 0 0 0 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1/8 0 0 0 0 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/8 −1/8 0 0 −1/4 0 0 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/8 −1/8 0 0 0 −1/4 0 0 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/4 0 −1/4 0 −1/4 0 −1/4 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/4 0 0 −1/4 0 −1/4 −1/4 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0

1/8 −1/8 0 0 0 0 −1/8 −1/8 0 0 0 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0

1/4 0 −1/4 0 −1/4 0 0 −1/4 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0

1/4 0 0 −1/4 0 −1/4 0 −1/4 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0

1/8 −1/8 −1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/4 0 0 0 0 0 0 0 0 0

1/8 −1/8 0 −1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/4 0 0 0 0 0 0 0 0

0 1/4 0 0 0 0 0 0 −1/4 0 −1/4 −1/4 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0

0 1/4 0 0 0 0 0 0 −1/4 −1/4 0 0 0 0 −1/4 0 0 0 0 0 1/2 0 0 0 0 0 0

0 1/4 0 0 0 0 0 0 0 −1/4 0 −1/4 0 0 0 0 0 −1/4 0 0 0 1/2 0 0 0 0 0

0 1/4 0 0 0 0 0 0 0 −1/4 −1/4 0 0 0 0 0 0 0 −1/4 0 0 0 1/2 0 0 0 0

−1/2 1/4 1/2 0 1/2 0 1/4 1/4 0 0 −1/4 0 −1/2 0 −1/4 −1/2 0 −1/4 0 0 0 0 0 1/2 0 0 0

−1/2 1/4 0 1/2 0 1/2 1/4 1/4 0 0 0 −1/4 0 −1/2 −1/4 0 −1/2 0 −1/4 0 0 0 0 0 1/2 0 0

0 1/4 0 0 0 0 0 0 −1/4 0 0 0 0 0 0 0 0 −1/4 −1/4 0 0 0 0 0 0 1/2 0

0 −1 0 0 0 0 0 0 1/2 1/2 1/2 1/2 0 0 1/2 0 0 1/2 1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 1
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By referring to SSGD2dσ̃̂I
(Eq. 54), Eq. 107 indicates that one promolecule (a quadru-

plet) as an RS-stereoisomer with [θ ]1 (A4 etc.) exists to belong to D2dσ̃̂I , while Eq.
108 indicates that one promolecule (a quadruplet) as an RS-stereoisomer with [θ ]2
(A3B etc.) exists to belong to Csσ̃̂I .

5.2 Fixed-point matrices for symmetry-itemized enumeration

For the purpose of systematic enumeration of allenes, several FPVs can be collected
as row vectors of a matrix, which is called a fixed-point matrix (FPM) according to
Sections 15.2 and 19.2 of [11]. By collecting the FPVs for the partitions [θ ]1–[θ ]19
(cf. Eqs. 105 and 106 for obtaining FPV[θ]1 and FPV[θ]2 ), we obtain the following
FPM:
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FPM1 =

[θ]1
[θ]2
[θ]3
[θ]4
[θ]5
[θ]6
[θ]7
[θ]8
[θ]9
[θ]10
[θ]11
[θ]12
[θ]13
[θ]14
[θ]15
[θ]16
[θ]17
[θ]18
[θ]19
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⎪

⎪

⎪

⎪
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 0 0 2 0 2 4 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 2 2 2 2 2 6 2 0 0 0 2 2 2 2 0 2 0 2 0 0 0 0 0 2 0 0
6 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

12 0 0 2 0 2 12 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 2 4 2 0 4 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
12 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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where the values collected in each column appear as the coefficients of the terms which
correspond to the partitions [θ ]i (i = 1 to 19), appearing in the generating function of
the RS-stereoisomeric group of the column. Thus, the coefficients of respective terms
in the generating function gCs (Eq. 98) appear in the Cs-column (the 6th column) of
the FPM1 (Eq. 110), where non-zero values appear in the [θ ]1-row (for A4 etc.), the
[θ ]2-row (for A3B etc.), the [θ ]4-row (for A2B2 etc.), the [θ ]6-row (for A2BX etc.),
the [θ ]8-row (for A2ppetc.), and the [θ ]13-row (for ABpp etc.).

Because the FPM (Eq. 110) contains FPVs as its row vectors, it is multiplied by
the inverse M−1

D2dσ̃̂I
(Eq. 109), so as to give an isomer-counting matrix (ICM1):

ICM1 = FPM1 × M−1
D2dσ̃̂I

=

[θ ]1

[θ ]2

[θ ]3

[θ ]4

[θ ]5

[θ ]6

[θ ]7

[θ ]8

[θ ]9

[θ ]10

[θ ]11

[θ ]12

[θ ]13

[θ ]14

[θ ]15

[θ ]16
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[θ ]18
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1/2 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1/2 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/2 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/2 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/2 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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(111)
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where vertical lines are added at every ten columns for the sake of convenience. The
j-th column corresponds to the subgroup Ǵ j collected in Table 3. The ICM1 contains
the resulting ICVs as its row vectors, so that the [θ ]1- and the [θ ]2-rows are identical
with the vectors shown in Eqs. 107 and 108.

The value 1
2 at the intersection between the [θ ]3-row and Cσ̃ -column (the 4th

column) in the ICM1 (Eq. 111) corresponds to the term 1
2 (A3p + A3p), which indicates

that an enantiomeric pair is counted once as a quadruplet.
The FPM can be constructed from the data of generating functions (e.g., Eq. 98)

by applying the procedure described above:

FPM2 =

[θ]20
[θ]21
[θ]22
[θ]23
[θ]24
[θ]25
[θ]26
[θ]27
[θ]28
[θ]29
[θ]30

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
4 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 2 2 2 4 0 0 4 0 2 2 0 0 0 0 2 0 0 2 0 0 0 2 0 0 0 0

12 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

12 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 8 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎫

⎪

⎪

⎪

⎪
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⎪
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⎪

⎪
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⎪
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⎪

⎪

⎪

⎭

(112)

The FPM (Eq. 112) is multiplied by M−1
D2dσ̃̂I

(Eq. 109), so as to give another isomer-
counting matrix (ICM2):

ICM2 = FPM2 × M−1
D2dσ̃̂I

=

[θ ]20

[θ ]21

[θ ]22

[θ ]23

[θ ]24

[θ ]25

[θ ]26

[θ ]27

[θ ]28

[θ ]29

[θ ]30

⎧
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⎪

⎪

⎪

⎪

⎪

⎪
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⎪
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⎪
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⎪
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⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0
0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

1/2 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0

1/2 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/2 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪
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(113)

where vertical lines are added at every ten columns for the sake of convenience. The
j-th column corresponds to the subgroup Ǵ j collected in Table 3.

5.3 Quadruplets for characterizing allene derivatives

5.3.1 Stereoisograms of five types itemized by RS-stereoisomeric groups

As shown in Fig. 4, the 27 subgroups of the RS-stereoisomeric group D2dσ̃̂I are
categorized into five types:
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Type I: SG[I] = {
5

Cσ̂ ,
7

C
̂I ,

8
Cσ̂ ′ ,

11
C2σ̂ ,

13
C2̂I ,

15
C′

2̂I
,

16
C′

2σ̂ ,
24

D2̂I

}

(114)

Type II: SG[II] = {
4

Cσ̃ ,
9

S̃4,
19

C2σ̃ ,
26

D2σ̃

}

(115)

Type III: SG[III] = {
1

C1,
2

C2,
3

C′
2,

18
D2

}

(116)

Type IV: SG[IV] = {
14

Csσ̃̂I ,
17

Csσ̃ σ̂ ,
20

S̃4σ̂ ,
21

S̃4̂I ,
23

S4σ̃ σ̂ ,
25

C2vσ̃̂I ,
27

D2dσ̃̂I

}

(117)

Type V: SG[V] = {
6

Cs,
10
S4,

12
C2v,

22
D2d

}

(118)

Let the symbol A denote a representative (a reference promolecule) for specifying
each enumerated quadruplet. According to the five categories shown in Eqs. 114–
118, there appear stereoisograms of five types, as shown in Fig. 5. This figure is a
modification of Fig. 6 of [27] and of Fig. 2 of [40], where the subgroups of D2dσ̃̂I are
shown along with three attributes characterizing respective types.

In each stereoisogram of Fig. 5, a reference promolecule located at its upper-left
position is represented by using the symbols A, which is a representative of a quadruplet
contained in the stereoisogram. The vertical equality symbol indicates the achirality
of A, as found in the type-IV or type-V stereoisogram. The horizontal equality symbol
indicates the RS-astereogenicity of A, as found in the type-II or type-IV stereoisogram.
The diagonal equality symbol indicates the asclerality of A, as found in the type-I
stereoisogram.

The type-I (or type-II) stereoisogram shown in Fig. 5 contains one pair of enan-
tiomers A/A. The type-III stereoisogram shown in Fig. 5 contains two pairs of enan-
tiomers A/A and B/B. The type-IV stereoisogram shown in Fig. 5 contains one achiral
promolecule A. The type-V stereoisogram shown in Fig. 5 exhibits pseudoasymmetry,
where it contains two achiral promolecules A and B, which are RS-diastereomeric to
each other.

5.3.2 List of stereoisograms of allene derivatives itemized by RS-stereoisomeric
groups

The isomer-counting matrices (ICMs) shown in Eqs. 111 and 113 contain an itemized
value at each intersection between the partition row ([θ ]i ; i = 1–30) and the subgroup
column (Ǵ j ∈ SSGD2dσ̃̂I

, cf. Eq. 54).

Quadruplets of Type I Among the subgroups collected in Eq. 114 (cf. Eqs. 39–46)
for characterizing quadruplets of type-I stereoisograms, the itemized enumerations
shown in Eqs. 111 and 113 indicate that there appear quadruplets belonging to Cσ̂

(the 5th column), C
̂I (the 7th column), C′̂

σ (the 8th column), C2̂I (the 13th column),
and C′

2σ̂ (the 16th column). A reference promolecule for each enumerated quadruplet
is depicted in Fig. 6.

For example, the promolecule 8 with A2B2 corresponds to the partition [θ ]4, so that
it belongs to the RS-stereoisomeric group C2̂I , as found in the intersection between
the [θ ]4-row and the C2̂I -column (the 13th column) of Eq. 111. The corresponding
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Fig. 5 Stereoisograms for representing RS-stereoisomers of five types, where RS-stereoisomeric subgroups
plausible for allene derivatives are listed under the action of D2dσ̃̂I . This figure is a modification of Fig. 6
of [27] and of Fig. 2 of [40], where three attributes characterizing respective types are shown along with
the subgroups of D2dσ̃̂I . The symbols A and A (or B and B) represent a pair of enantiomers based on an
allene skeleton

123



1742 J Math Chem (2014) 52:1717–1750

Fig. 6 Representatives of type-I quadruplets for allene derivatives. The partitions [θ ]i (i = 1–30) are
shown in Eqs. 68–97. The RS-stereoisomeric groups of type I are selected from Eqs. 39–46 in accord
with enumeration data listed in ICM1 (Eq. 111) and ICM2 (Eq. 113). The RS-stereoisomeric groups are
accompanies with the corresponding point groups and stereoisogram types

stereoisogram of type I is shown in Fig. 5, where an enantiomeric pair of A and
A corresponds to a common term A2B2. The subduction at the 13th row of Table
3 indicates the presence of two C2̂I (/C

̂I )-orbits, which correspond to A2 and B2,
respectively.

Note that two or more promolecules with the symbol ¶1 (or ¶2 . . . ¶4) have the same
partition but belong to different types of RS-stereoisomeric groups. For example, 8
with ¶1 (type I in Fig. 6) corresponds to 63 with ¶1 (type IV in Fig. 9), where their
enumerated values appear in the [θ ]4-row of Eq. 111. Such promolecules with the
same partition are called isoskeletal isomers [38], when they are not stereoisomeric.

Three promolecules linked with an underbrace (*) have the same partition but
belong to different RS-stereoisomeric groups, although they are categorized into the
same type (type I). For example, a set of 11,12, and 13 exhibits isoskeletal isomerism
within the type-I category, where its value 3 appears in the [θ ]10-row of Eq. 111.
Another isoskeletal set of 15,16, and 17 corresponds to the value 2 (the Cσ̂ -column
or the 5th column for 15 and 16) and the value 1 (the C′̂

σ -column or the 8th column
for 17) in the [θ ]28-row of Eq. 113.

Quadruplets of Type II Among the subgroups listed in Eq. 115 (cf. Eqs. 35–38)
for characterizing quadruplets of type-II stereoisograms, the itemized enumerations
shown in Eqs. 111 and 113 indicate that there appear quadruplets belonging to Cσ̃

(the 4th column), C2σ̃ (the 19th column), and D2σ̃ (the 26th column). A reference
promolecule for each enumerated quadruplet is depicted in Fig. 7.

For example, the promolecule 19 with A2p2 corresponds to the partition [θ ]5,
so that it belongs to the RS-stereoisomeric group C2σ̃ . The value 1/2 at the
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Fig. 7 Representatives of
type-II quadruplets for allene
derivatives. The partitions [θ ]i
(i = 1–30) are shown in
Eqs. 68–97. The
RS-stereoisomeric groups of
type II are selected from Eqs.
35–38 in accord with
enumeration data listed in ICM1
(Eq. 111) and ICM2 (Eq. 113).
The RS-stereoisomeric groups
are accompanies with the
corresponding point groups and
stereoisogram types

intersection between the [θ ]5-row and the C2σ̃ -column (the 19th column) of Eq.
111 shows the presence of one quadruplet of 1

2 (A2p2 + A2p2). The correspond-
ing stereoisogram of type II is shown in Fig. 5, where A and A correspond to
A2p2 and A2p2, respectively. The subduction at the 19th row of Table 3 indi-
cates the presence of one C2σ̃ (/Cσ̃ )-orbit (A2) and one C2σ̃ (/C′̃

σ )-orbit (p2 or
p2).

Two or more promolecules with the symbol †1 (or †2 · · · †10) have the same
partition but belong to different types of RS-stereoisomeric groups. For exam-
ple, the promolecule 19 with †1 (type II in Fig. 7) corresponds to 33 with †1
(type V in Fig. 8), where their enumerated values appear in the [θ ]5-row of Eq.
111.

Quadruplets of Type III Among the subgroups listed in Eq. 116 (cf. Eqs. 27–30)
for characterizing quadruplets of type-III stereoisograms, the itemized enumerations
shown in Eqs. 111 and 113 indicate that there appear quadruplets belonging to C1 (the
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Fig. 8 Representatives of type-III quadruplets for allene derivatives. The partitions [θ ]i (i = 1–30) are
shown in Eqs. 68–97. The RS-stereoisomeric groups of type III are selected from Eqs. 27–30 in accord with
enumeration data listed in ICM1 (Eq. 111) and ICM2 (Eq. 113). The RS-stereoisomeric groups are accom-
panies with the corresponding point groups (the same as the RS-stereoisomeric groups) and stereoisogram
types
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Fig. 9 Representatives of type-IV and type-V quadruplets for allene derivatives. The partitions [θ ]i (i = 1–
30) are shown in Eqs. 68–97. The RS-stereoisomeric groups of type IV or type V are selected from Eqs.
47–53 or Eqs. 31–34 in accord with enumeration data listed in ICM1 (Eq. 111) and ICM2 (Eq. 113). The
RS-stereoisomeric groups are accompanies with the corresponding point groups and stereoisogram types

first column) and C′
2 (the third column). A reference promolecule for each enumerated

quadruplet is depicted in Fig. 8.
For example, the promolecule 33 of type III (A2p2), which corresponds to the

partition [θ ]5, is an isoskeletal isomer of the promolecule 19 of type II, as denoted by
the symbol †1. The promolecule 33 belongs to the RS-stereoisomeric group C′

2.
The value 1/2 at the intersection between the [θ ]5-row and the C′

2-column (the third
column) of Eq. 111 shows the presence of one quadruplet of 1

2 (A2p2 + A2p2). The
corresponding stereoisogram of type III is shown in Fig. 5, where a pair of A and A
or another pair of B and B corresponds to A2p2 and A2p2. The subduction at the third
row of Table 3 indicates the presence of two C′

2(/C1)-orbits which accommodate A2

and p2 separately.
As another example to be examined, the promolecule 41 of ABpp ([θ ]13) belongs to

the RS-stereoisomeric group C1, which gives a type-III stereoisogram. The presence of
one RS-stereoisomer is confirmed by the value 1 appearing at the intersection between
the [θ ]13-row and the C1-column (the first column) of Eq. 111. The promolecule 41,
as attached by the symbol ‡1, corresponds to 68 with ‡1 (type V in Fig. 9), where the
enumerated value of the latter appears at the intersection between the [θ ]13-row and
the Cs-column (the 6th column) of Eq. 111.

Three promolecules linked with an underbrace (*) have the same partition but
belong to different RS-stereoisomeric groups, although they are categorized into the
same type (type III). For example, a set of 37, 38, and 39 exhibits isoskeletal isomerism
within the type-III category, where its value 3/2 appearing in the [θ ]11-row of Eq. 111
should be interpreted as 3 × 1

2 (ABXp + ABXp). Similar situations emerge for sets
of 42/43/44 ([θ ]14), 47/48/49 ([θ ]18), 50/51/52 ([θ ]19), 56/57/58 ([θ ]29), and 59/60/61
([θ ]30).

Quadruplets of Type IV Among the subgroups listed in Eq. 117 (cf. Eqs. 47–53)
for characterizing quadruplets of type-IV stereoisograms, the itemized enumerations
shown in Eqs. 111 and 113 indicate that there appear quadruplets belonging to Csσ̃̂I ,
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Csσ̃ σ̂ , S4σ̃ σ̂ , C2vσ̃̂I , and D2dσ̃̂I . A reference promolecule for each enumerated quadru-
plet is depicted in Fig. 9.

The promolecule 63 with ¶1, which is an isoskeletal isomer of 8 with ¶1 (type I
in Fig. 6), belongs to the RS-stereoisomeric group C2vσ̃̂I . The presence of one RS-
stereoisomer is confirmed by the value 1 appearing at the intersection between the
[θ ]4-row and the C2vσ̃̂I -column (the 25th column) of Eq. 111. The promolecule 63
is a representative of a type-IV stereoisogram shown in Fig. 5, which contains A as a
sole promolecule.

The promolecule 64 with ¶2 ([θ ]23) is an isoskeletal isomer of 9 with ¶2 (Fig.
6). The promolecule 64 belongs to the RS-stereoisomeric group S4σ̃ σ̂ , which gives a
type-IV stereoisogram shown in Fig. 5.

It should be noted that the four positions of 64 construct a four-membered
S4σ̃ σ̂ (/Cσ̃ )-orbit (cf. the 23rd row of Table 3), which is determined to be enan-
tiospheric. Note that S4σ̃ σ̂ is ex-achiral and Cσ̃ is ex-chiral in terms of the RS-
stereoisomeric-group theory. Hence, the four proligands p2p2 are equivalent to one
another under the action of S4σ̃ σ̂ (⊂ D2dσ̃ σ̂ ).

From the viewpoint of the point-group theory, on the other hand, the four posi-
tions of 64 construct a four-membered S4(/C1)-orbit, which is determined to be
enantiospheric. Note that S4 is achiral and C1 is chiral in terms of the point-group
theory. Hence, the four proligands p2p2 are also concluded to be equivalent to one
another under the action of S4 (⊂ D2d ). The conventional term ‘enantiotopic’ should
be extended to characterize such a four- or more-membered enantiospheric orbit.

Quadruplets of Type V Among the subgroups listed in Eq. 118 (cf. Eqs. 31–34)
for characterizing quadruplets of type-V stereoisograms, the itemized enumerations
shown in Eqs. 111 and 113 indicate the presence of one quadruplet at the intersection
between the [θ ]13-row and the Cs-column (the 6th column). This quadruplet is repre-
sented by a reference promolecule 68 with ‡1 ([θ ]13), which is an isoskeletal isomer of
41 with ‡1 (cf. Fig. 8). The reference promolecule 68 derives a type-V stereoisogram
shown in Fig. 5, which contains achiral promolecules A and B. Note that the two
achiral promolecules A and B are RS-diastereomeric to each other. The features of the
type-V stereoisogram will be more detailedly discussed in Part II of this series.

In terms of the conventional terminology based on ‘pseudoasymmetric axis’
and ‘chirality axis’ (Table 1 of [41]), stereodescriptors ‘r/s’ are assigned to such
‘pseudoasymmetric axes’ as 68 (type V, achiral) and 47 (type III, chiral), while stere-
odescriptors ‘R/S’ are assigned to such ‘chiral axes’ as 8 (type I, chiral) and 33 (type
III, chiral). In particular, the chiral case 47 (characterized to be a ‘pseudoasymmetric’
axis) is inconsistent with the dichotomy between the term ‘pseudoasymmetric axis’
and the term ‘chirality axis’. It follows that the conventional terms ‘pseudoasymmetric
axis’ should be restricted to such achiral cases as 68 (type V, achiral) if the dichotomy
is maintained. After the abandonment of the dichotomy, however, the assignment of
stereodescriptors ‘r/s’ to 68 (type V, achiral) and 47 (type III, chiral) should be ratio-
nalized by a new formulation free from the conventional term ‘pseudoasymmetric
axis’. Note that ‘pseudoasymmetry’ (concerning RS-stereogenicity in the present ter-
minology) and ‘chirality’ (concerning chirality in the present terminology) denote
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distinct categories from the present viewpoint. Such a new formulation will be more
detailedly discussed in Part II of this series.

6 Type-itemized enumeration

6.1 Type-enumeration matrices

The categories shown in Eqs. 114–118 enable us to enumerate quadruplets in an
itemized fashion with respect to the five types of stereoisograms. For this purpose, the
type-enumeration matrix (TEM) is introduced in a parallel way to a gross-enumeration
matrix (GEM) for gross enumerations (cf. Table 2 of the present paper).

Let m ji be the j i-element of the inverse mark table M−1
D2dσ̃̂I

(Eq. 109). The Ǵ j -row
is tentatively fixed and the row is summed up according to the categorization of type
I–V as follows:

̂N (I )
j =

∑

Ǵi ∈SG[I]
m ji (119)

̂N (I I )
j =

∑

Ǵi ∈SG[II]
m ji (120)

̂N (I I I )
j =

∑

Ǵi ∈SG[III]
m ji (121)

̂N (I V )
j =

∑

Ǵi ∈SG[IV]
m ji (122)

̂N (V )
j =

∑

Ǵi ∈SG[V]
m ji (123)

̂N j = ̂N (I )
j + ̂N (I I )

j + ̂N (I I I )
j + ̂N (I V )

j + ̂N (V )
j (124)

Let us consider a 27×6 type-enumeration matrix (TEM) where the j-th row (TEM j )
as a row vector is represented as follows:

TEM j =
(

̂N j , ̂N (I )
j , ̂N (I I )

j , ̂N (I I I )
j , ̂N (I V )

j , ̂N (V )
j

)

(125)

for Ǵ j (∈ SSGD2dσ̃̂I
) (cf. Eq. 54). Then Ǵ j runs to cover the SSG (Eq. 54) so as to give

27 row vectors TEM j ( j = 1–27). The respective elements of TEM j are collected in
the TEM column of Table 3.

Because the FPM1 (Eq. 110) contains FPVs as its row vectors, it is multiplied
by the TEM (Eq. 125 and Table 3) so as to give an isomer-type-counting matrix
(ITCM), where the six columns contain the numbers of total quadruplets and those of
quadruplets of the respective types.
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ITCM1 = FPM1 × TEM =

[θ]1
[θ]2
[θ]3
[θ]4
[θ]5
[θ]6
[θ]7
[θ]8
[θ]9
[θ]10
[θ]11
[θ]12
[θ]13
[θ]14
[θ]15
[θ]16
[θ]17
[θ]18
[θ]19
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⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪
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⎪
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⎪

⎪
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⎪
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⎪
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⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 0 0 0 1 0
1 0 0 0 1 0

1/2 0 1/2 0 0 0
2 1 0 0 1 0
1 0 1/2 1/2 0 0
2 1 0 0 1 0
1 0 1/2 1/2 0 0
2 1 0 0 1 0
1 0 1/2 1/2 0 0
3 3 0 0 0 0

3/2 0 0 3/2 0 0
1 0 1/2 1/2 0 0
2 0 0 1 0 1

3/2 0 0 3/2 0 0
1/2 0 1/2 0 0 0
1 0 1/2 1/2 0 0
1 0 1/2 1/2 0 0

3/2 0 0 3/2 0 0
3/2 0 0 3/2 0 0

⎫
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⎪

⎪
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⎪
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⎪

⎪

⎭
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In a similar way, the FPM2 (Eq. 112) contains FPVs as its row vectors. The matrix
is multiplied by the TEM (Eq. 125 and Table 3) so as to give an isomer-type-counting
matrix (ITCM), where the six columns contain the numbers of total quadruplets and
of quadruplets of respective types.

ITCM2 = FPM2 × TEM =

[θ]20
[θ]21
[θ]22
[θ]23
[θ]24
[θ]25
[θ]26
[θ]27
[θ]28
[θ]29
[θ]30

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪
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⎪

⎪

⎪
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1/2 0 1/2 0 0 0
1/2 0 1/2 0 0 0
1/2 0 1/2 0 0 0
2 1 0 0 1 0
1 0 1/2 1/2 0 0
1 0 1/2 1/2 0 0
1 0 1/2 1/2 0 0
1 0 1/2 1/2 0 0
3 3 0 0 0 0

3/2 0 0 3/2 0 0
3/2 0 0 3/2 0 0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(127)

The values collected in the ITCMs (Eqs. 126 and 127) are consistent with the
quadruplets listed in Figs. 6–9, i.e., the second columns (type I) with Fig. 6, the third
columns (type II) with Fig. 7, the 4th columns (type III) with Fig. 8, the 5th columns
(type IV) with the top two rows of Fig. 6, and the 6th columns (type V) with the bottom
row of Fig. 8. For example, the value 1/2 at the intersection of the [θ ]3-row and the
third column (the type-II column) in Eq. 126 corresponds to the term 1

2 (A3p + A3p).
This term indicates the presence of a quadruplet of RS-stereoisomers (as a pair of
enantiomers) with the partition [θ ]3, where the Cσ̃ -promolecule 21 is a representative
of the quadruplet characterized by the type-II stereoisogram shown in Fig. 7.

The values calculated in Eqs. 126 and 127 under the action of the RS-stereoisomeric
group D2dσ̃̂I are consistent with the previous results enumerated under the action of
the corresponding point group D2d [38].

7 Conclusion

The isomorphism between the RS-stereoisomeric group D2dσ̃̂I and the point group
D4h has been throughly discussed, so as to clarify the subgroups of D2dσ̃̂I . After
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the coset representation of D2dσ̃̂I is subduced to the subgroups, unit-subduced cycle
indices with chirality fittingness (USCI-CFs) for characterizing D2dσ̃̂I are obtained
according to the USCI approach developed by Fujita [11]. Then, the FPM method of
the USCI approach is applied to the USCI-CFs. Thereby, the numbers of quadruplets
are calculated in an itemized fashion with respect to the subgroups of D2dσ̃̂I . After
the subgroups of D2dσ̃̂I are categorized into types I to V, type-itemized enumeration
of quadruplets is conducted to illustrate the versatility of the stereoisogram approach.
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